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Processes of heat transfer with periodically varying intensity on the surface of heated bodies of three typical 

geometries (plate, cylinder, sphere) are considered. The true heat transfer coefficient, which varies in time 

by the law of a periodic step function having two free parameters - amplitude and asymmetry, is specified 

on the heat transfer surface. Resultant relations are obtained for calculating the experimental heat transfer 

coefficient, which is the quantity measured in a traditional heat transfer experiment and used in applied 

calculations. 

Processes of Heat Transfer with a Periodic Intensity. Real processes of heat transfer between a wall and 
a fluid are almost always accompanied by periodic fluctuations of the thermohydraulic parameters of the fluid 
(velocities, pressures, temperatures) relative to their mean values. 

In [1 ] a general approximate method was developed to analyze processes of heat transfer having a periodic 

intensity. The method is based on replacement of the real complex picture of thermohydraulic fluctuations in the 
heat carrier by a simplified scheme with a prescribed "true" heat transfer coefficient that varies periodically along 
the heat transfer surface and in time: 

a = ( a ) ( 1  +~fl).  (1) 

Here ( a ), ~p are the averaged and fluctuational components of the "true" heat transfer coefficient, respectively. By 
solving the nonstationary heat conduction equation for a wall with a boundary condition of the third kind we 

determine the temperature head O and the heat flux density q in the wall and, in particular, those on the heat 
transfer surface 0~, q~. By definition the "true" heat transfer coefficient is equal to 

a - w 

O~ (0~) (1  + ~'~') ' 

(2) 

where ( O~ ), ( q~ ) are the averaged, and ~ ,  ~ are the reduced fluctuational, values of the quantities. 
The value obtained as the quotient from division of the averaged heat flux density transmitted through the 

wall ( q5 ) by the averaged difference between the temperatures of the wall and the heat carrier ( 0~ ) will be referred 
to as the "experimental" heat transfer coefficient [1 ]: 

Note that precisely the quantity a m is the objective of a traditional heat transfer experiment and is used in applied 
calculations. According to Eq. (2), the "true" averaged heat transfer coefficient is equal to 

q_5)= ( q s )  ( _ _ ) .  

( a ) = ( O  5 (Oa) 1 + ~ '  
(4) 
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Thus, the two different procedures for averaging Eq. (2) lead to two corresponding averaged values of the heat 

transfer coefficient: "true" ( a ) and "experimental" am, which generally are unequal. 

In [1 ] it is proved in a general form that the ratio of the indicated quantities e = a m / (  a ) varies within the 

limits 

1 )-1 ( (5) 

Thus, the "experimental" heat transfer coefficient is smaller than the "true" averaged one or is equal to it 

in the limit (a m < ( a )). 

As shown in [1 ] on specific examples, the "true" heat transfer coefficient in a variety of situations has time 

to "adapt" to changes in the parameters of the heat carrier and acquires the corresponding quasistationary values. 

This means that we may prescribe the quantity c~ as a function of the hydrodynamics  of the flow, i.e., irrespective 

of the thermal effect of the walt. Then,  by changing the wall parameters (the thermophysical properties, thickness, 

geometry),  for a = idem we obtain a set of values of a m that quantitatively and qualitatively expresses the thermal 

effect of the wall on the averaged heat transfer. The result of the analysis in [1 ] is the relative quantity e = 

CZm/( a ), which is a correcting factor for the averaged heat transfer coefficient ( a ) determined in the corresponding 

nonconjugate problem of convective heat transfer (i.e., without account for the thermal effect of the wall). 

In [ 2 - 4  ], as a continuation of the general analysis of [1 ], a simple approximate method is developed for 

calculating the value of e for a wall that is a flat plate of thickness 6. The  present work is devoted to the derivation 

of a computational relation for e that would correlate three different geometric forms of the wall: a plate, a cylinder, 

and a sphere with internal heat sources. 

The fluctuational component of the "true" heat transfer coefficient is prescribed in the form of a step 

function that depends only on the time: 

1 + 7? = 1 + b 1 , 0 _< r /T  o < 2ars, 1 + ~2 = 1 - b2, 2:rs _ ~/~ o -< 2:r. (6) 

Here bl and b2 are the amplitudes of the fluctuations vd for the "active" (increased heat transfer rate) and "passive" 

(decreased heat t ransfer  rate) periods; T is the time; z 0 is the full period of fluctuations; s is the asymmetry 

parameter. The condition of periodicity of ~p gives the foUowing normalizing relation: 

blS = b 2 (1 - s) .  (7) 

Thus,  the case of purely time fluctuations (homogeneous over the entire heat t ransfer  surface) of the heat transfer 

intensity with two free parameters is considered: asymmetry s and amplitude bl (or b2). 

Mathematical Description of the Problem. A solution of the heat conduction equation 

cp - - = 2  - - + - - -  + qv  
Or Ox 2 x Ox 

can be represented,  due to its linearity, in the form of a superposition of a stationary part <0>(x) ,  which satisfies 

the equation 

2 [ dx 2 + -x dx + qv = 

A 

and the boundary condition d ( 0 ) / d x  = 0 at x = 0, and a fluctuational part O(x, r) described by the equation 

cp E 
(10) 
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Here r is the time; x is the transverse coordinate; c, p, 2 are the heat capacity, density, and thermal conductivity 

of the wall, respectively; qv = const is the volumetric density of heat sources; p is a geometric factor (p = 0 for a 

plate, p -- 1 for a cylinder,  and p = 2 for a sphere). 

The stat ionary solution has the form 

qv [ 1  - (x/5) 21 
2(1  + p ) 2  

The periodic solution of Eq. (10) satisfying the boundary condition (OO/OX)x=O = 0 has the following form: 

a) p = 0 (a plate) 

= ~ Bk sh X ] k / 2  (1 + i) "x eikt , sh X/k/2  (1 - i) -~ -ikt 
k=l sh X / k / 2  (1 + i) ~ + Bk sh ~ k / 2  (1 i) ~ e ; 

(11) 

b) p = 1 (a cylinder) 

berov~ 2 + i bet o ~ Y ikt . berov~ Y - i bet o d-k ~ -ikt 
- -  - -  2 . ,  B k  e + B k _ e ; 

k= 1 ber0d-k- d + i bet 0 v~ 5 ber0v~ 6 + i bet 0 d-s 5 

(12) 

c) p = 2 (a sphere) 

�9 sh x / k / 2  (1 - i) -2 -ikt (13) ~' = 5 Bk sh x / k / 2  (1 + i )~  eikt + Bk e 
X k=l sh v~k/2  (1 + i) 6 sh ~ / k / 2  (1 - i) 

Here t = z / r  0, 2 = x/v~-oo are the dimensionless values of the time and the transverse coordinate; a is the thermal 

diffusivity of the wall; d = L / ( p  + 1); L -- V /F  is a characteristic length; V, F is the volume and heat transfer 

surface of the heat-  transmitting body, respectively; Bk, B*~ are complex conjugate eigenvalues. 

Omitting intermediate calculations similar to those given in [3, 4 ], we will write down the final relation for 

the relative quantity e = a m / (  a ): 

e = emi n + (1 - emin) e , .  (14) 

Here 

(1 - b2) [b 2 + (1 - b2) s ]  
emin = b 2 + (1 - 2b2) s 

(15) 

is the minimum value of e; 

e. = [s (2 - s) + (1 - s)2A c th A ]  - I  , (16) 

is the value of e calculated for the limiting case of an adiabatic "passive" period b2 = 1, emi n = O; 

1 ( a ) z  0 ( 6 )  (17) 
A -  2 pcS.  cth ~ .  

is the parameter  of the thermal effect of the wall, 

5,2 = s (1 - s )  
2 av0 

(18) 

is the effective thickness of the wall. 
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Relations (14)-(18) determine the thermal effect of the wall on the averaged heat transfer and have the 

following asymptotics: 

a) degeneration of the thermal effect of the wall (e -~ 1, a m --. ( a )) occurs in the limiting cases s ~ 0, s ~ 1, 

A-~ 0 (either the "active" or the "passive" period tends to zero; the thermal conductivity of the wall tends to 

infinity); 

b) the maximum effect of the wall on the heat transfer (e. -~ 0, e -~ emin, a m ~ emin( 6r )) corresponds to 

A -> co (zero thermal conductivity of the wall); 

c) for 6 / ~ .  ~ 1 ("semi-infinite" body) we obtain the case of degeneration of the  effect of the thickness on 

the heat transfer (cth (6 /c~ . )  ~ 1); 
d) when 6 / 6 .  -~ 0 (an infinitely thin wall), the effect of the thermal conductivity of the wall degenerates 

(A --> (1/2)(( a ) z O / p c $ ) ) .  
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